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1. Introduction

The intense activity over the recent years in extra dimensional models has renewed the

interest in the study of the vacuum configurations of such theories. Vacuum solutions

with a non trivial behaviour in the extra coordinate have been investigated in simple five

dimensional (5D) models where particles can be confined to a brane or live in the bulk,

in particular to understand chirality properties or fermion masses and mixings, [1 – 3],

or just to study the existence and stability of non trivial scalar configurations in simple

λφ4 theories on the circle or the orbifold [4 – 8], extending the pioneering papers on field

localization in extra dimensions [9, 10]. In addition, brane terms are always generated

by radiative corrections, even in the absence of tree level brane couplings [2]. The aim

of this work is to show the inconsistency of assuming constant vacuum configurations to

trigger a spontaneous symmetry breaking, without checking that they must also satisfy the

constraints arising from interactions on the brane. If such constant configurations are not

allowed, a non-trivial vacuum also has to break translational invariance. Hence one has

to study the modification of the naive vacuum configuration in presence of such delta-like

terms. Note that the effect of brane kinetic terms has been investigated for scalar, fermion

and gauge theories in [2, 11 – 15] and they introduce subtleties of their own not related to

our analysis, for this reason we will not use them to illustrate the effects we are interested

in.

All that is needed for this vacuum translational invariance breaking to occur is that

the condition for a constant non-vanishing vacuum coming from the brane has to be in-

compatible with the usual conditions coming from the bulk. There are many possibilities
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for such localized terms: we could use brane masses, or self interactions for the bulk fields,

or interactions between fields in the bulk and on the brane. Since our aim is just illustra-

tive, we have chosen, for simplicity, a simple two-Higgs doublet model in five dimensions,

assuming one Higgs in the bulk and the second one on the brane. Models of this type have

been considered mainly from the phenomenological point of view as the simplest extensions

of the Standard Model (SM) in five dimensions without supersymmetry [16, 17, 19, 20].

Nevertheless, the standard approach to 5D electroweak symmetry breaking with bulk Hig-

gsses is through effective field theory. In this sense we could consider that this or similar

models could also be obtained [18] as the low energy effective theory of a supersymmet-

ric extra-dimensional extension of the SM [21 – 23]. Another reason for choosing two-Higgs

models is that we have explicitly found that usually one assumes the existence of a constant

vacuum solution for the bulk field, which does not depend on the extra coordinate, without

discussing whether the two-Higgs potential admits such a solution. However, in a previ-

ous paper [24] we have already noticed that a constant solution in general does not exist,

unless a particular relation among the quadrilinear couplings of the bulk and brane Higgs

potential is satisfied. In this paper we provide analytic expressions for vacuum solutions

and we build explicit examples with non trivial profiles corresponding to configurations

which are absolute minima of the energy density. The examples are chosen to illustrate the

extreme cases when the constant vacuum configuration is still a fairly good approximation,

or when there is a sizable breaking of translational invariance. In addition they show that

the procedure to obtain the solution in presence of other brane terms at a different fixed

point is essentially similar.

In section 2 we review the SU(2)L×U(1)Y two-Higgs model in five dimensions, with the

field Φ1 propagating in the bulk and the field Φ2 localized on the brane at y = 0. In section

3 we analyze the most general solutions, constant on the brane, of the equations of motion

of the scalar fields in terms of Jacobi elliptic functions. In section 4 we explicitly build

examples where these solutions have lower energy than the trivial Φ1 = Φ2 = 0 solution,

showing that, indeed, non trivial vacuum configurations exist. These solutions lead to a

spontaneous symmetry breaking with a pattern which is non standard, since the vacuum

is not translationally invariant in the extra coordinate, and the vacuum expectation value

of the bulk scalar field is not related to the Lagrangian parameters in the usual manner.

2. Delta-like interactions between brane and bulk fields

For illustration, let us consider a very simple 5D scalar model with an action containing

both bulk and brane terms as follows:

S =

∫ b

a

dy

∫

d4x
{

L(5) + L(4))
}

, (2.1)

L(5) = ∂MΦ†
1∂

MΦ1 − V (5)(Φ1) , (2.2)

L(4) = δ(y)
[

∂µΦ†
2∂

µΦ2 − V (4)(Φ1,Φ2)
]

, (2.3)

where M = µ, 5 and a < 0 < b. Note that Φ1 has energy dimension 3/2, whereas Φ2 has

dimension 1. There could be some other fields, but, for the following discussion, only Φ1
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and Φ2 are relevant. In order to identify the vacuum state, we need to solve the equations

of motion

(−∂2
y + �)Φ1 =

δV (5)

δΦ1
+ δ(y)

δV (4)

δΦ1
, (2.4)

δ(y)�Φ2 = δ(y)
δV (4)

δΦ2
, (2.5)

∑

α=Φ1,Φ†
1

∫

d4x

[(

δL(5)

δ∂yΦα
δΦ1

)

y=b

−
(

δL(5)

δ∂yΦα
δΦ1

)

y=a

]

= 0 . (2.6)

The last term comes from the boundary conditions, and could also give rise to contributions

that can be recast in terms of δ(y − a) and δ(y − b) functions and are thus similar to those

that we will consider next. This said, and for simplicity, we will choose periodic boundary

conditions so that eq. (2.6) is automatically satisfied. Nevertheless, the procedure to include

another discontinuity is as simple as considering an additional boundary condition in the

new fixed point. We will illustrate the procedure, which is very similar to the single

brane case, in an example in section 4, where we impose a discontinuity in the bulk field

derivative at ±πR. Note that we consider, for simplicity, the circle with periodic boundary

conditions, and that for the orbifold case, when the bulk field ϕ1 is odd under the Z2

orbifold projection, one could consider more general boundary conditions at y = 0 [25]

than those above, which would deserve a separate and more general discussion.

The vacuum manifold corresponds to those solutions of the above equations of motion

with minimum energy. Customarily, one considers constant solutions, so that the vacuum

manifold corresponds to the minima of the potential, and, in particular, δV (5)/δΦ1 = 0

and δV (4)/δΦi = 0 with i = 1, 2. However, we will show here that the presence of delta-like

interactions between brane and bulk fields modifies the vacuum manifold in such a way

that static field configurations are not allowed any more. We will show that this effect is

non-perturbative and that even an infinitesimal value of such a coupling could avoid the

presence of the naively expected pattern of spontaneous symmetry breaking on the brane.

In order to illustrate these effects we will concentrate on a model widely used in

the literature, although our considerations are applicable to more general solutions of the

kind described above (and probably involving other kind of fields like fermions, or more

complicated interaction terms, as long as brane-bulk interactions are present).

2.1 An example within 5D extensions of the standard model

We consider a minimal 5D extension of the SM with two scalar fields. For the moment

it is irrelevant whether the compactification is done on the [−πR, πR] circle with periodic

boundary conditions or in an orbifold S1/Z2, of length πR, since we are only interested in

vacuum configurations. Of course, for oscillations around the vacuum the orbifold would

lead to fields with definite y-parity.

In this simple model the SU(2)L and U(1)Y gauge fields and the Higgs field Φ1 prop-

agate in the bulk while the Higgs field Φ2 lives on the brane at y = 0. The Lagrangian of
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the gauge Higgs sector is given by (see [20] for a review)

∫ πR

−πR

dy

∫

dxL(x, y) =

∫ πR

−πR

dy

∫

dx

{

− 1

4
BMNBMN − 1

4
F a

MNF aMN + LGF (x, y)

+(DMΦ1)
†(DMΦ1) + δ(y)(DµΦ2)

†(DµΦ2) − V (Φ1,Φ2)

}

, (2.7)

BMN , F a
MN are the U(1)Y and SU(2)L field strengths and a is the SU(2)L index. The

covariant derivative is defined as DM = ∂M − ig5A
a
M τa/2 − ig′5BM/2. For simplicity we

will consider a Higgs potential symmetric under the discrete symmetry Φ2 → −Φ2, which

is given by

V (Φ1,Φ2) = µ2
1 (Φ†

1Φ1) + λ1 (Φ†
1Φ1)

2 + δ(y)

[

1

2
µ2

2 (Φ†
2Φ2) +

1

2
λ2 (Φ†

2Φ2)
2 (2.8)

+
1

2
λ3 (Φ†

1Φ1)(Φ
†
2Φ2) +

1

2
λ4 (Φ†

1Φ2)(Φ
†
2Φ1) + λ5 (Φ†

1Φ2)
2 + h.c.

]

,

where the dimensionalities of the couplings are: 1 for µ1 and µ2, -1 for λ1, λ3, λ4 and λ5,

whereas λ2 is dimensionless. The vacuum state manifold corresponds to configurations

which are both energy minima and solutions of the following equations of motion:

(−∂2
y + �)Φ1 = µ2

1Φ1 + 2λ1 (Φ†
1Φ1)Φ1 (2.9)

+δ(y)
[

λ3 Φ1(Φ
†
2Φ2) + λ4 Φ2(Φ

†
2Φ1) + 2λ5 (Φ†

1Φ2)Φ2

]

,

δ(y)�Φ2 = δ(y)
[

µ2
2Φ2 + 2λ2 (Φ†

2Φ2)Φ2 + λ3 (Φ†
1Φ1)Φ2

+λ4 (Φ†
2Φ1)Φ1 + 2λ5 (Φ†

1Φ2)Φ1

]

. (2.10)

However, one could naively think, and it is customarily assumed [16 – 20], that the

extrema of the potential correspond to constant configurations Φ1 = (0, v1/
√

4πR), Φ2 =

(0, v2/
√

2). Let us note, however, that if we substitute such constant solutions into the

equations of motion above, we find

0 = v1

(

µ2
1 + 2λ1

v2
1

4πR

)

, (2.11)

0 = v2

(

µ2
2 + λ2v

2
2 +

v2
1

4πR
(λ3 + λ4 + 2λ5)

)

, (2.12)

0 = v1 v2
2 (λ3 + λ4 + 2λ5) . (2.13)

If the trivial solutions v1 = v2 = 0 correspond to a minimum we have a trivial vacuum

configuration and no spontaneous symmetry breaking. When implementing a spontaneous

symmetry breaking one customarily builds the Lagrangian in such a way that µ2
1 < 0,

µ2
2 < 0 and thus a minimum occurs for v1 6= 0 and v2 6= 0. Actually, this is the case of the

two first conditions above. However, note that, for arbitrary values of λ3, λ4 and λ5 such

a solution is incompatible with the last condition, eq.(2.13), which is the one coming from

the delta term in the Lagrangian. The usual constant solution is compatible with the brane

– 4 –



J
H
E
P
0
4
(
2
0
0
8
)
0
4
8

condition only if λ3 + λ4 + 2λ5 = 0. This may come as a surprise since these constants

parametrize the interaction of brane and bulk fields and are, in principle, independent.

Thus, even the tiniest value of an interaction with λ3 + λ4 + 2λ5 6= 0 destroys the usual

ansatz of a translationally invariant vacuum state in the y direction.

It is now easy to understand the remark we made in the introduction that all that is

needed for this vacuum translational invariance breaking to occur is that the condition for

a constant non-vanishing vacuum coming from the brane — eq.(2.13) in this case — has to

be incompatible with the usual conditions coming from the bulk — eqs.(2.11) and (2.12).

Actually, the position of the brane plays no role at all in eq. (2.13), which means that a

similar braking effect could also be obtained with similar interaction terms located at other

fixed points. In addition, any other brane term, like brane masses or self-interactions of

the bulk fields, which are not included in our model for simplicity, as long as they would

make the brane condition incompatible with the bulk conditions, would lead to the same

kind of translational breaking.

For illustration, let us return to our simple model. In a previous work [24], for simplicity

we required λ3+λ4+2λ5 = 0, which ensures that the minimum of the potential corresponds

to the usual ansatz. In this way, the Higgs fields are expanded in the standard form

Φ1(x, y) =





i√
2
(ω1 − iω2)

1√
2
(

v1√
2πR

+ h1 − iω3)



 , Φ2(x) =





i√
2
(π1 − iπ2)

1√
2
(v2 + h2 − iπ3)



 , (2.14)

where v1 ≡
√

−2πRµ2
1/λ1 and v2 ≡

√

−µ2
2/λ2 are proportional to the vacuum expectation

values of the scalar fields. Let us remark that we assume λ1 > 0, λ2 > 0 and λ3 >

−2
√

2πRλ1λ2, otherwise the potential is not bounded from below.

In the literature this “constant ansatz” is sometimes assumed [20] without noting that

the relation λ3 +λ4 +2λ5 = 0 is required, which thus limits the generality of the approach.

We will see that, for certain choices of parameters, the assumption that the vacuum state

is independent of y might still be a good approximation, although, as we will show, the

vacuum expectation value of Φ1 could be rather different from that of the constant case.

Moreover, one could wonder what happens in the general case when λ3 + λ4 + 2λ5 6= 0 at

tree level or if such a term was generated at higher orders from the different renormalization

of the λ3, λ4 and λ5 parameters. We will see that, by including such a term, the spatial

invariance in the fifth dimension y is broken and non trivial vacuum configurations are

obtained from solutions of eqs. (2.9) and (2.10).

3. Static solutions of the equations of motion

Following the previous discussion, in this section we will first search for solutions of the

equations of motion that could play the role of the true vacuum. In section 4, we will

study whether these solutions have a lower energy than the trivial vacuum so that they

can trigger a spontaneous symmetry breaking. In particular we will look here for solutions

that do not depend on the 4D space-time coordinates x, but still have a dependence on y.
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For the sake of simplicity, and because we just want to illustrate the effects due to the

presence of a δ(y) term, we will study the λ4 = λ5 = 0, λ3 6= 0 case. We can then recast

the static vacuum solutions as

〈Φ1(x, y)〉 =

(

0

ϕ1(y)

)

, 〈Φ2(x)〉 =

(

0

ϕ2

)

, (3.1)

where ϕ1(y) is a real-valued field, and ϕ2 a real constant. Therefore, the equations of

motion, eqs. (2.9) and (2.10) for non-trivial vacuum solutions in this model, are reduced to

∂2
yϕ1(y) − ϕ1(y)

[

µ2
1 + 2λ1ϕ1(y)2 + δ(y)λ3ϕ

2
2

]

= 0 , (3.2)

δ(y)ϕ2

[

µ2
2 + 2λ2 ϕ2

2 + λ3 ϕ1(y)2
]

= 0 . (3.3)

The above solutions have an associated energy density per unit volume:

H =

∫ πR

−πR

dy
[

(∂yϕ1(y))2 + µ2
1ϕ1(y)2 + λ1ϕ1(y)4+δ(y)

(

µ2
2ϕ

2
2+λ2ϕ

4
2 + λ3ϕ1(y)2ϕ2

2

)]

. (3.4)

As usually done, we account for the presence of the δ-function by solving the δ-less

equation

∂2
yϕ1(y) − ϕ1(y)

[

µ2
1 + 2λ1ϕ1(y)2

]

= 0 (3.5)

in the bulk regions y < 0 and y > 0 separately, and then connecting both pieces using the

following boundary conditions

• continuity in y = 0:

ϕ1(0
−) = ϕ1(0

+) ≡ ϕ1(0); (3.6)

As we commented in section 2, for the case of ϕ1 odd under the Z2 orbifold projec-

tion, more general boundary conditions at y = 0 [25] than the one above could be

considered, that would require a discussion of their own.

• discontinuity of the first derivative in y = 0 with a gap λ3ϕ
2
2ϕ1(0):

ϕ′
1(0

+) − ϕ′
1(0

−) = λ3ϕ
2
2ϕ1(0), (3.7)

where by eq. (3.3) we should have

ϕ2
2 = − µ2

2

2λ2
− ϕ1(0)

2λ3

2λ2
, with ϕ2

2 > 0. (3.8)

3.1 Solutions in the bulk

Let us solve eq.(3.5). Following [26, 5] we first multiply both sides by ∂yϕ1(y) and integrate

in y, to get
1

2
(∂yϕ1(y))2 − 1

2
µ2

1ϕ1(y)2 − λ1

2
ϕ1(y)4 = e0, (3.9)

where e0 is a conserved quantity. Thus, integrating again

y − y0 = ±
∫ ϕ1(y)

ϕ1(y0)

dt
√

µ2
1t

2 + λ1t4 + 2e0

. (3.10)
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This integral can be solved analytically in terms of Jacobi elliptic functions [27, 28].

Such methods are well known, and thus we only provide the necessary steps to understand

our notation. In particular, the exact solution depends on the nature of the roots of the

polynomial

P4(t) ≡ λ1t
4 + µ2

1t
2 + 2e0. (3.11)

These are given by

t2 =
−µ2

1 ±
√

µ4
1 − 8e0λ1

2λ1
≡ −µ2

1

2λ1

(

1 ∓ β2
)

, (3.12)

with

β2 =
√

1 − α, α =
8e0λ1

µ4
1

. (3.13)

Hence, depending on the values of α, we have the following cases:

(A) α < 0; P4(t) has two real and two complex solutions. We can therefore make use of

the definition of the Jacobi elliptic cn(x, k2) function:
∫ x

1

dt
√

(1 − t2)(1 − k2 + k2t2)
= cn−1(x, k2), (3.14)

to rewrite eq. (3.10) as follows:

y − y0 = ± a√
N

∫
ϕ1

a
(y)

ϕ1

a
(y0)

dt
√

(1 − t2)(1 − k2 + k2t2)
. (3.15)

This is achieved by rescaling t → at, so that

P4(t) → λ1a
4t4 + a2µ2

1t
2 + 2e0 ≡ N(1 − t2)(1 − k2 + k2t2), (3.16)

where

k2 =
1

2

(

1 +
1

β2

)

, a2 =
−µ2

1

2λ1
(1 + β2) > 0, N =

−µ4
1

2λ1
β2(1 + β2) < 0. (3.17)

In this way we finally get what we will call the “A type” solution

ϕA
1 (y) = ± |µ1|√

2λ1

√

1 + β2 nc

(

|µ1|β(y − y0),
1

2

(

1 − 1

β2

))

, (3.18)

where we used the relation cn(ix, k2) =
1

cn(x, 1 − k2)
≡ nc(x, 1 − k2).

(B) 0 ≤ α ≤ 1, that is, 0 ≤ β ≤ 1; in this case, P4(t) has four real solutions.

Again, we rescale t → at; then we can match P4(t) to

P4(at) → N(1 − t2)(1 − k2t2), (3.19)

which leads to a Jacobi elliptic sn(x, k2) solution
∫ x

0

dt
√

(1 − t2)(1 − k2t2)
= sn−1(x), (3.20)

– 7 –
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with

k2 =
1 − β2

1 + β2
, a =

|µ1|√
2λ1

√

1 − β2, N = 2e0 =
µ4

1

4λ1
(1 − β4) > 0 , (3.21)

thus leading to what we will call “B1 type” solution

ϕB1
1 (y) = ± |µ1|√

2λ1

√

1 − β2 sn

( |µ1|√
2

√

1 + β2(y − y0),
1 − β2

1 + β2

)

, (3.22)

which is an oscillating function of y that satisfies ϕB1
1 (y0) = 0.

But we can also recast P4(t) as

P4(at) → N(1 − t2)(t2 − 1 + k2), (3.23)

which now leads to a Jacobi elliptic dn(x, k2) solution
∫ x

1

dt
√

(1 − t2)(t2 − 1 + k2)
= dn−1(x), (3.24)

by identifying,

k2 =
2β2

1 + β2
, a =

|µ1|√
2λ1

√

1 + β2, N =
−µ4

1

4λ1
(1 + β2)2 < 0. (3.25)

This is what we will call a “B2 type” solution, which does not oscillate. It satisfies

ϕB2
1 (y0)/a = 1, and can be written as

ϕB2
1 (y) = ± |µ1|√

2λ1

√

1 + β2 dc

( |µ1|√
2

√

1 + β2(y − y0),
1 − β2

1 + β2

)

, (3.26)

where we have used the relation dn(ix, k2) = dc(x, 1 − k2)

(C) α > 1. In this case β2 is pure imaginary and P4(t) has no real solutions. We can

rewrite eq. (3.10) as:

y − y0 = ±
∫ ϕ̃1(y)

ϕ̃1(y0)

dt̃
√

(t̃2 − (1 +
√

1 − α))(t̃2 − (1 −
√

1 − α))
, (3.27)

where we have made the rescaling:

t → t̃ =

√
2λ1

|µ1|
t. (3.28)

This integral is not equal to the inverse of a Jacobi elliptic function, as those of the

previous cases. However, although in a somewhat more tedious way, it can be solved

by using the standard techniques for elliptic integrals [27, 28]. The general solution

is:

ϕC
1 (y) =

|µ1|√
2λ1

√

1

2k2 − 1
× (3.29)

dn
(

|µ1|√
2

√

1
2k2−1

(y − y0), k
2
)

±
√

1 − k2 sc
(

|µ1|√
2

√

1
2k2−1

(y − y0), k
2
)

dn
(

|µ1|√
2

√

1
2k2−1 (y − y0), k2

)

∓
√

1 − k2 sc
(

|µ1|√
2

√

1
2k2−1 (y − y0), k2

) ,
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with

k2 =
1

2

(

1 +
1√
α

)

. (3.30)

Let us now build the complete solutions of eq. (3.5) by imposing suitable boundary

conditions in y = 0 and y = ±πR.

3.2 Matching conditions

From integration, we initially have four free constants, two on the left side of the brane

y < 0, that we call y0L and βL (y0L, αL in the case of type C solutions), and two more on

the right side, y > 0, called y0R and βR (again, y0R, αR for solutions of type C). This fixes

the shape of the function in the intervals, but, since the fields and their derivatives always

appear squared in the action, there is an overall sign ambiguity, as it happens in the naive

case with λ3 = λ4 = λ5 = 0 where the vacuum in the bulk is given by either v1 or −v1.

Nevertheless, we are just looking for static minima of the action, which is symmetric

under y ↔ −y. Hence the vacuum states must be even or odd under y ↔ −y, which

implies βL = βR ≡ β. Also note that solutions which are antisymmetric under y ↔ −y

satisfy trivially the boundary condition (3.7); however if we require the continuity of ϕ1(y)

in y = πR, its derivative has at least two nodes (one in the (0, πR) region and the other in

the (−πR, 0) one), so it cannot correspond to a global minimum of the energy (as we have

explicitly checked numerically). In conclusion we are only interested in even solutions and

therefore y0L = −y0R ≡ y0.

Then, apart from the overall sign arbitrariness, we are left with two constants β, y0

that parametrize the space of possible candidates for vacuum configurations.

Furthermore our solutions should be of class C1 except in y = 0, and possibly in

y = ±πR where we could impose some additional boundary conditions. At y = 0 the

left and right solutions should match each other according to eqs. (3.6), (3.7) and (3.8).

The first one is automatically satisfied for even or odd functions, as in our case. If non

trivial solutions do exist, then we must have µ2
2 < 0, so (3.8) tells us that, for λ3 > 0,

ϕ1(0) is bounded by ϕ1(0)
2 < −µ2

2/λ3. However, eq. (3.7) gives a relation between the

two parameters β, y0, that has to be solved numerically. All in all, that leaves us with just

one free parameter. This one can be fixed if we impose an additional boundary condition

on y = ±πR. As we will see, the boundary condition could be as simple as requiring

continuity of the first derivative in ±πR, but other choices are possible. Similarly to the

terms in eq.(2.6), one could even think of another delta-like interaction term localized in

mirror branes in y = ±πR.

In summary, by imposing the y = 0 boundary conditions in eqs. (3.6), (3.7) and (3.8),

together with an additional boundary condition on y = ±πR, one has sufficient constraints

to fix, up to a global sign, the complete vacuum configuration in terms of the bulk solutions

A, B1, B2, C detailed in the previous section. In general we found that a given choice of

parameters does not allow the existence of all kind of solutions. Of course, the trivial

solution v1 = v2 = 0 is always present, but it will not correspond to the true vacuum if

one of the solutions described above has a lower energy. This will lead to a spontaneous
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symmetry breaking with a pattern that does not correspond to the one customarily assumed

in the literature, since the vacuum is not translationally invariant in the y variable. For

some choice of parameters it can also happen that non trivial solutions cannot be found,

so that there is no spontaneous breaking of symmetry.

In the next section we will show, with explicit examples, that for certain choices of the

parameters, the non-trivial configurations do exist and have lower energy densities than

the trivial one.

4. Examples of non-trivial vacuum configurations

We have seen how the solutions are basically fixed by the boundary conditions, once we

know the Lagrangian parameters. Let us now remark that in the model we have considered

in section 2 there are five independent parameters λ1, λ2, λ3 and µ1, µ2. Note that, in the

realistic case for the usual two-Higgs doublet one customarily chooses the parameters with

the constraint v2
1 + v2

2 = v2 = (
√

2GF )−1, which fixes the electroweak scale and one of

the Lagrangian parameters in terms of the others. However, since now ϕ1(y) is not a

constant, the integration over the fifth dimension does not factorize, and one can relate the

electroweak scale to

v2 ≡ 4

∫ πR

0
ϕ1(y)2 dy + 2ϕ2

2 = 4

∫ πR

0
ϕ1(y)2 dy − µ2

2 + λ3 ϕ1(0)
2

λ2
, (4.1)

where we have used eq. (3.8). Of course, in the λ3 → 0 limit, we recover the usual relation

v2 = v2
1 + v2

2 .

In this work we are only interested in the vacuum, but, of course if the scalar ϕ1 gets

a non trivial vacuum profile, then the gauge vectors relative to the broken generators will

also have non trivial profiles. As a consequence, the relation between the gauge boson mass

and v will also be modified with respect to the standard case by a quantity of the order

of the relative variation of the ϕ1 along the extra dimension. For the precise relation one

needs the explicit calculation of the profile of gauge modes, which lies beyond the scope of

this work, but we plan to obtain in the future.

We will show that, depending on the boundary conditions on y = ±πR, we can still find

solutions for which the usual constant ansatz may be a good approximation, although the

vacuum expectation value of the Φ1 field on the y = 0 brane might be rather different from

v1/
√

4πR. In addition, there are solutions which change sizeably in the extra dimension

and should not be approximated by a constant value. Both cases will be illustrated with

the following examples.

4.1 Quasi-constant vacuum in the extra dimension

Let us impose, as a boundary condition, the continuity of the first derivative of ϕ1(y) in

y = ±πR. The periodicity, moreover, identifies the point πR with the point −πR; so, what

we require is: ϕ′
1(πR) = ϕ′

1(−πR). But since ϕ′
1 is an odd function, then ϕ′

1(−πR) =

−ϕ′
1(πR) also comes true, so we conclude that ϕ′

1(πR) = 0, that is, πR is a maximum or

– 10 –
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Figure 1: Vacuum configuration for the choice of parameters of section 4.1. Note that, by taking

it as constant, (as it is for λ3 = 0), might be a good approximation, since its variation from

y = 0 to y = πR is less than 1%. However, ϕ1(0)
√

4πR ≃ 233 GeV when λ3 = 0, instead of

ϕ1(0)
√

4πR ≃ 143 GeV here.

a minimum for ϕ1(y). Let us then make a simple choice of parameters:

πR = (1TeV)−1, µ1 = 165 GeV, λ1 = 0.5 × 2πR, λ2 = 1, λ3 = 0.85 × 2πR. (4.2)

Since we require v = 246GeV in eq.(4.1), apart from a global sign, there is only one

continuous solution of eq. (3.7), that turns out to be of the B1-type, and can be written as

follows:

ϕB1
1 (y) = +

|µ1|√
2λ1

√

1 − β2 sn

( |µ1|√
2

√

1 + β2(y − y0),
1 − β2

1 + β2

)

, y > 0 , (4.3)

ϕB1
1 (y) = − |µ1|√

2λ1

√

1 − β2 sn

( |µ1|√
2

√

1 + β2(y + y0),
1 − β2

1 + β2

)

, y < 0 , (4.4)

with µ2 ≃ 220 GeV, β ≃ 0.79 and y0 ≃ 0.012 GeV−1. Here, for definiteness, we have taken

the sign in front of the y > 0 solution to be positive, but of course, there is another solution

with a global sign difference that will have the same energy.

The energy density can be calculated using eq. (3.4); we find that it is equal to

−(179 GeV)4, which is less than the (0 GeV)4 associated with the trivial static solution,

thus confirming the fact that we are in presence of a spontaneous symmetry breakdown.

Actually, since there are no other solutions, the one we have found, shown in figure 1 cor-

responds to a global minimum and can be identified with the true vacuum. As it can be

seen from the figure, a constant solution in this case would be an adequate approximation,

since the difference between ϕ1(0) and ϕ1(πR) is less than 1%. However, we should note

that the vacuum expectation value ϕ1(0) of the Φ1 field on the y = 0 brane, with our

choice of parameters gives ϕ1(0)
√

4πR ≃ 143GeV, very different from the corresponding

v1 ≃ 233 GeV which would be obtained with the parameter choice (4.2) and λ3 = 0. This is

a 63% decrease that can modify the spectrum of the Kaluza-Klein excitations with respect

to the one of the naive ansatz even if the vacuum configuration is almost constant.
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Figure 2: Vacuum configuration for the choice of parameters of section 4.2. We see that a constant

ϕ1 is not a good approximation: the variation from y = 0 to y = πR is about 22%. The variation of

ϕ1(0) with respect to the non-interacting case is even greater; we would have ϕ1(0)
√

4πR ≃ 85 GeV

for λ3 = 0 (with the other parameters kept constant), while ϕ1(0)
√

4πR ≃ 19 GeV here.

4.2 Sizable violation of translational invariance in the extra dimension

Let us allow for a discontinuity of the first derivative in y = ±πR assuming for ϕ′
1(±πR)

a given value different from 0. We make a different choice of parameters:

πR = (1TeV)−1, µ1 = 60 GeV, λ1 = 0.5 × 2πR, λ2 = 2, λ3 = 10 × 2πR. (4.5)

Again, the minimum corresponds to a B1 type solution as in eqs. (4.3) and (4.4), but

with µ2 ≃ 349 GeV, β ≃ 0.1 and y0 ≃ 0.15GeV−1. The energy density in this case is

≃ −(245GeV)4, again indicating a spontaneous symmetry breaking. Incidentally, in this

case there is also another solution, of type A, but it has a positive energy density and thus

it does not correspond to a vacuum state.

Actually, and as we have commented in the introduction, boundary conditions at

±πR can also be interpreted as additional delta-like terms in ±πR. Maybe the simplest

possibility to impose exactly the above behavior of ϕ′
1 in ±πR is to introduce in the

Lagrangian a brane mass term of the form δ(y ± πR)(−2κΦ†
1Φ1). It is easy to check that

it leads to the following boundary condition: ϕ′
1(±πR) = κϕ1(±πR) that reproduces the

case just described above with the choice κ = 229 GeV.

In figure 2, we show the vacuum configuration for the choice of parameters of eq. (4.5).

We can note that, in this case, the constant approximation would not be appropriate, since

the difference between ϕ1(0) and ϕ1(πR) is more than 20%. Moreover, ϕ1(0)
√

4πR ≃
19 GeV while v1 ≃ 85 GeV, so the corresponding relative difference is even greater than

that of the previous case.

Let us conclude this section, by observing that an estimation of ϕ1(0) can be also

obtained by solving the free equation of motion for the bulk scalar field with the corre-

sponding boundary conditions and minimizing the 4D effective potential evaluated on the

e.o.m. solutions. We have checked that the values of ϕ1(0) so obtained in the two examples
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considered are a very good approximation of the results from the exact solutions previously

discussed.

5. Summary

In this work we have shown how the explicit breaking of translational invariance on the

extra dimension induced by delta-like interactions between scalar bulk and brane fields

translates into the vacuum configuration. This effect modifies the naively expected pat-

tern of spontaneous symmetry breakdown in extra dimensional extensions of the Standard

Model containing such terms. In particular we have found that, if a general form for the

scalar potential is considered, constant non trivial solutions of the equation of motion for

the scalar fields on the bulk cannot be found. We are thus forced to consider a vacuum

configuration for the scalar bulk field that depends on the extra coordinate y.

We have used a simple two-Higgs model to illustrate these effects, and, in particular,

we have derived the shape of the vacuum configuration in two examples: in the first one, the

y dependence is weak, so that a constant configuration may still be a good approximation;

however, the value of the vacuum expectation value on the brane of the scalar bulk field is

significantly shifted with respect to the case with no brane-bulk interactions, and this could

cause a modification of the Kaluza-Klein spectrum of the bulk fields after the spontaneous

symmetry breaking. In the second example, the y dependence is much stronger, and a

constant solution would only be a poor approximation to the actual vacuum configuration.

Future developments of this work include the calculation of how the Kaluza-Klein

spectrum of both the scalar and gauge fields is modified in a model with brane-bulk in-

teractions, or how these effects modify the scattering of longitudinal gauge bosons among

themselves and with Higgs bosons. In addition, one can test how a y-dependent vacuum

expectation value of the Higgs field would modify the generated fermion masses.
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We thank M. Pérez-Victoria as well as L. Vecchi for useful comments and discussions. Work

partially funded by an INFN-MEC/CICYT Florence-Madrid Collaboration Contract. For
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